
NASA Technical Memorandum 101575

DeMAID - A Design Manager's Aide

for Intelligent Decomposition User's Guide

[UASA-lll-IG1575) C r E A I E : A L'ES36& BALIAGEE'S
liXDE PCR I L T E L L l 6 E l T C E C C L € C S I S l C P CSEE'S
C C l D E (SASA. I a n g l e y lieseaxct Center)
36 c CSCL 09B

James L. Rogers

MARCH 1989

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

W89-22358

Unclas
63/6 1 0204456

TABLE OF CONTENTS

1. Introduction

2. A Proposed Model of the Design Process

3. Components of DeMaid
3.1 The Input Data
3.2 The Main Program
3.3 The Graphics Package
3.4 The Knowledge-based System

4. Functions of DeMAID
4.1 Planning
4.2 Scheduling
4.3 The NxN Mamx Display
4.4 Multilevel Decomposition
4.5 Examine Parallelism
4.6 The Dependency Matrix

5. References

3

4

5
6
9
10
11

12
13
15
17
20
22
23

25

1

1. INTRODUCTION

.

.

Many engineering systems are large and multidisciplinary. Before the design of such
complex systems can begin, much time and money are invested in determining the possible
couplings among the participating subsystems and their parts. For designs based on existing
concepts, like commercial aircraft design, the subsystems and their couplings are usually well-
established. However, for designs based on novel concepts, like large space platforms, the
determination of the subsystems, couplings, and participating disciplines is an important task.
Moreover, this task must be repeated as new information becomes available or as the design
specifications change. Determining the subsystems is not an easy, straightforward process
and often important couplings are overlooked. The design manager must know how to divide
the design work among the design teams so that changes in one subsystem will have
predictable effects on other subsystems. The resulting subsystems must be ordered into a
hierarchical structure before the planning documents and milestones of the design project are
set. The success of a design project often depends on the wise choice of design variables,
constraints, objective functions, and the partitioning of these among the design teams. Very
few tools are available to aid the design manager in determining the hierarchical structure of a
design problem and assist in making these decisions.

Recently Sobieski (ref. 1) showed the value of multilevel optimization as an approach to
solving complex design problems. But to use this approach, a novel design problem must be
decomposed to identify its hierarchical structure. Although much work has been done in
applying AI tools and techniques to problems in different engineering disciplines, only
recently has the application of AI tools begun to spread to the decomposition of complex
design problems. Steward (ref. 2) developed a project management tool to organize and
display the couplings among tasks in an NxN matrix format using matrix manipulations. A
new tool called the Design Manager’s Aide for Intelligent Decomposition (DeMAID) has
been developed to implement a decomposition scheme suitable for multilevel optimization. It
displays the data i n an NxN matrix format and replaces the matrix manipulations with a
knowledge base to provide more flexibility. In addition, if the design project has a time
constraint placed on it, the design manager may have to examine the trade-offs between
sequential and parallel processing. DeMAID provides that capability. Rogers (ref. 3)
presents a more detailed discussion DeMAID.

PRECEDING PAGE BLANK NOT FILMED

2. A PROPOSED MODEL OF THE DESIGN PROCESS

DeMAID incorporates only one model of the many possible models of the design process.
This model parallels Steward’s (ref. 2) model of a system which defines the structure of a
system as the way in which some parts of a system affect other parts of a system. These
effects differentiate a system from just a collection of parts. The semantics of the system
describe how and why these effects occur. The structure and semantics together completely
describe the system. To attain a desirable structure, the design manager needs more formal
tools to gain understanding of both the structure and the semantics of the system.

Typically, a desirable structure has a limited number of feedback links because they increase
the cost of the solution. Feedback links imply that information is required before it is
available which, in turn, implies that guesses must be made to initiate the process and
iterations are necessary. One method of reducing feedback links is multilevel decomposition
where the modules and their couplings are ordered in such a way that a number of smaller
uncoupled optimization problems can be identified.

DeMAID partitions the modules of a system into circuits which represent subsystems where
each module is simultaneously dependent on all of the other modules within the same circuit.
Feedback links are contained within the circuits indicating that an iteration is required.
Circuits are connected to each other only by feedforward links. This indicates that there is no
iteration among circuits and they can be ordered in a multilevel format. Thus a complex
design process can be decomposed into a hierarchical set of tasks.

4

.

3. COMPONENTS OF DeMAID

The four primary components of DeMAID are the input data, the main program, the graphics
package, and the knowledge-based system. A diagram of DeMAID is shown in figure 1.

.
CLIPS lnfere

01-3000 r l
P

t

-
:e EnginelKnowledge Base F-l

Figure 1 - A diagram of DeMAID.

,

5

3.1 The Input Data

The user begins the design of a complex system that is divisible into modules by determining
the outputs that contribute to the objective and constraint functions of the system. The user
divides the system into these modules and determines the input and output of each module
creating a data file to be read by the main program. Table 1 is an example of the relationships
that might be found among the different design elements. From this list of relationships, a
data file is created that contains the number of modules followed by a list of the modules. The
input data for the sample problem described in table 1 is shown in table 2.

The format of a single line in the list is:

module number name weight time output unknown input-list

The module and unknown items are not to be changed by the user. The module item is used
to designate the list as module data for the inference engine. The unknown item is a status
marker for the inference engine and changes as different stages of the reordering are passed.

The items to be changed by the user are:

number - a unique number, beginning with 1 and numbered consecutively. These numbers
are rearranged as the modules are reordered.

name - a unique name.

weight - a weight factor. Typically the factors are 4 for an objective function, 3 for a design
variable, 2 for a behavior variable, and 1 for a constraint function. The modules are ordered
within a circuit based on these factors.

time - a time which is an estimate of how long the module will take to complete execution.

output - a unique name for the output of the module. Regardless of whether the output is a
single value or many values, it is given a single, unique name.

input-fist - a list of the input requirements for the module. If a module requires no input from
within the system (Le. the input is from an external source or the module is for initialization
purposes) the user inputs "no-input" which must be in lower case and have the hyphen.

6

c

Design variables
1. DVO l=€(GO 1 1 ,GO 12,GOl3
3. DVOZ=f(GOl l,GO12,GO13)
3. DV03=€(GO11 ,GO 12,G013)
4. DV04=f(G003)
5. DV05=f(G003)
6. DV06=f(GO 14,G015)
7. DV07=f(GO14,GO15)
8. DV08=f(G014,G015)
9. D V09=f(G004,G005)
10. DVlO=f(G004,G005)
11. DVl l=f(G004,G005)
12. DV 12=f(GO 16,G017)
13. DV l3=f(GO 16,GO 17)
14. DV 1 k f (G 0 16,G017)
14. DV15=€(G016,GO 17)
16. DVl6=f(G006,G007,G008)
17. DVl7=f(G006,G007,G008)
18. DV18=f(G006,G007,G008)
19. DV 19=f(G009,GO 10)
20. DV20=f(G009,GOlO)
2 1. DV2 1=f(G001 ,G002)
22. DV22=f(GOOl,G002)
23. DV23=f(OBOl)
24. DV99=f(G001 ,G003,G030)

Constraint functions
1. GOO l=f@V16,DV 17,BV02)
2. G002=f@VI S,BVO2)
3. G003=€@VO 1 ,DV02,DV03,D V 0 4 D V 0 3
4. G004=€@VO6,DVlO,DVl l.BV04)
5. G005=f@VO7,DVOS,DVlO,DV 1 1 3 V04)
6. G006=f@V12,DV13,DV16,DV179V18)
7. GoO7=f@V 12,D V 1 3 9 V 1 6 9 V 1 7 9 V 1 8)
8. GOOS=f@V 12,DV13,DV16,DV17,DV18)
9. G009=f@V14,DV19,DV20)
10. G O l o = f @ v l 5 ~ v l 9 D v 2 o)
11. Go1 1=f(Dvo1~vo2,Dvo3)
12. GO 12=f@V23,BV03)
13. GO1 3=f@V23 ,BVO3)
14. GO 14=f@V06,DV07,DVO8D V23)
15. GO 1 5=f@ VO6,DVO7,DVO89V23)
16. GO 16=f@V23,BVO 1)
17. GO 17=f(DV23$VOl)
18. G098=f(DVlB,.DV26,DV32)

0 bjective Function
1. OBOl=f@V23)

Behavior variables
1. BVOl=f@Vl2J3V13,DV14,DV15)
2. BV02=f(DV21,DV22)
3. BVO3=f@VOl~V02,DVO3)
4. BV04=f@V09,DVlO,DVI 1)
5. BVjO=f@VOl,DV02,DV03)

Table 1 - Relationships among the design elements of the sample problem.
The notation = f(...) means i s afwrcrion of.

7

46
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
*module
module
module
module

+module
module
module
module
module
module
module
module
module
module
module
modUlC
moddc
module
module
module
module
module
module
module
module
module
module
module
*module

No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
so
41
42
43
44
45
46

Name wt.
TXSKClO 1
TASKDO7 3
T.4SKD17 3
TASKD23 3
TXSKD’LO 3
TASTKD15 3
TASKB03 9,

TASKC1-L 1
T A S K 0 7 1
TASKClj 1
TASKD21 3
TASKC04 1
TASKCZII 1
TASKC06 1
T A S K 0 3 1
TASKC13 1
TASKBO4 2
TASKD99 3
TASKD11 3
TASKDO2 3
T A S K 0 1 1
TASKC98 1
T A S K 1 6 1
TASKD13 3
TASKDO5 3
TASKD14 3
T A S K 0 8 1
TASK802 2
TASKD10 3
TASKCG9 1
TASKCll 1
TASKD16 3
TASKD06 3
TASKD19 3
TASKDO3 3
TASKDO9 3
TASKD12 3
TASRC12 1
TASKD22 3
TASICD18 3
TASI(D01 3
TASKD08 3
TASKFOl 4
TASKBOl 2
TASKCOS 1
TASK3350 2

Tm.
27
12
12
81
17
22
53
IS
18
62
12
15
35
23
24
17
70
84
22
12
35
10
5s
15
53
74
53
17
42
98
14
67
68
74
46
57
25
19
57

so
93
44
62
12
39

a4

out.
GO10
DV07
DV17
DV23
DV20
D V l j
B V03
GOlS
(3007
GO15
DV2 1
Goo4
GO17
G O 6
Goo3
GO13
BV04
DV99
D V l l
DV02
GOO1
GO98
GO16
DV13
DV05
DV14
Goo8
BV02
DVlO
Goo9
GO1 1
DV16
DV06
DV19
DV03
DV09
DV12
GO12
DV22
DV18
DVO 1
DV08
OBOl
BVOl
GOO5
BV50

Input
D V l j DV19 DV20
GO14 GOlS
GOO6 GO07 GO08
OBOl
GOO9 GO10
GO16 GO17
DVOl DVO2 DVO3
DV06 DV07 DV08 DV23
DV12 DV13 DV16 DV17 DVZS
DV06 DV07 DV08 DV23
GOO1 GOO2
DV06 DVlO D V l l BV04
DV23 BVOl
DV12 DV13 DV16 DV17 DVlS
DVOl DVOZ DVO3 DV04 DVOS
DV23 BV03
DV09 DVlO D V l l
GOOl GOO3 GO30
GOO4 GOO5
GO1 1 GO12 GO13
DV16 DV17 BV02
DV18 DV26 DV32
DV33 BVOl
GO16 GO17
GOO3
GO16 GO17
DV12 DV13 DV16 DV17 DVlS
DV21 DV22
G004 G005
DV14 DV19 DV20
DVOl DV02 DV03
GOO6 GOO7 GOO8
GO14 GO15
GOO9 GO10
GO11 GO12 GO13
G004 GOO5
GO16 GO17
DV23 BV03
GOOl GOO2
GO06 GO07 GO08
GO11 GO12 GO13
GO14 GO15 +

DV23
DV12 DV13 DV14 DV15
DV07 DV08 DVlO DVl I BV04
DVOl DV02 DV03

Table 7 - Original input dam (* indium modules not contributing to solution which y-e removed
during planning and the italicized labels are not part of the input tilei

8

3.2 The Main Program

The main program is written entirely in FORTRAN. The other components are added by
linking existing software to the main program. The other components include:

DI-3000 - the graphics package (ref. 4), the linking must include whether the display is black
and white (Tektronix 4014 display) or color (VT240 display).

CLIPS (C Language Production System) - the knowledge-based system (ref. 5).

RUNCLIPS - sets up the subroutine (KBANS1) to receive data from the rules (ref. 5).

FORTNTER - the subroutines to interface the main program with the knowledge-based
system (ref. 5).

The main program controls the flow of execution through a system of menus. The user first
has a choice of displaying the output on the screen or writing it to a file for post-processing.
The user then must select whether the display is black and white or color. Through the main
menu, the user has the choice of planning, scheduling, displaying the NxN matrix, displaying
the multilevel organization, examining parallelism, or displaying the dependency matrix.

The menu appears to the user as follows:

1 - Planning stage
2 - Scheduling stage
3 - Display NxN matrix
4 - Stages 1-2
5 - Stages 2-3
6 - Stages 1-2-3
7 - Multilevel display
8 - Examine parrallelism
9 - Display dependency matrix
0 - stop

Each of these areas is discussed in more detail in the section on functions of the system.

9

3.3 The Graphics Package

DI-3000 is a device independent graphics system and is the primary graphics package used at
NASA Langley Research Center. The data can be displayed on a Tektronix 4014 window of
the DEC VaxStation or a DEC VT240 monitor. The graphics window is divided into two
parts. One is for a dialogue area for user interface and the other is for the graphics display.
The graphics calls in DeMAID are very simple operations such as moving the cursor, drawing
lines and circles, text, and receiving data from the mouse or m o w keys. Since all of the calls
to the DI-3000 graphics package are made from a single subroutine, GRFXEC, it should pose
no problem for the user to replace DI-3000 with another graphics package.

All of the calls to GRFXEC have an option parameter. The options are:

0 - initialize DI-3000.
1 - use mouse to find interface between two modules.
5 - draw graphics window.
6 - draw modules.
7 - draw boxes around circuits.
8 - draw links between modules.
1 0 - move cursor to upper left hand corner of dialogue area.
11 - move cursor to lower left hand corner of dialogue area.
20 - draw levels for multilevel display.
21 - draw multilevel boxes.
22 - draw multilevel links.
100 - close down graphics.

10

3.4 The Knowledge-based System

CLIPS (ref. 5) is a knowledge-based system that was developed at NASA Johnson Space
Center. It is written in C, performs forward chaining based on the Rete pattern matching
algorithm, and has a FORTRAN interface. There are three main parts to this knowledge-
based system, the facts, the rules, and the inference engine.

Facts are the basic form of data in the knowledge base and are contained in a facts-list. A fact
is composed of one or more fields with each field separated by a space. A field can contain a
number, a word, or a string. Facts can be asserted into the facts-list by an assert command in
the calling program before the inference engine is executed.

The knowledge base also contains rules. A rule states that specific actions are to be taken if
certain conditions are met. An action may be to return data to the calling program through the
FORTRAN interface or assert a new fact into the facts-list. A rule executes based on the
existence or non-existence of facts in the facts-list. Currently there are 156 rules divided
among seven files and are loaded into the knowledge base as needed.

The inference engine applies the knowledge (rules) to the data (facts) by pattern matching the
facts in the facts-list against the conditions of the rule. The basic execution cycle begins by
examining the knowledge base to determine if the conditions of any rules have been met. All
rules with currently met conditions are placed on to the agenda which is essentially a push
down stack. Once the agenda is complete, the top rule is selected and its actions are executed.
As a result of the action(s) of the rule, new rules may be placed on the agenda and rules
already o n the agenda may be removed. This cycle repeats until all rules that can execute
have done so. The calling program passes control to CLIPS for execution of the inference
engine and CIAIPS returns control back to the calling program after all the rules have been
executed.

Data is returned from the knowledge base to the KBANSl subroutine of the main program.
KBANS 1 has four parameters for returning data from the knowledge base. The first
parameter is CHOICE and is alphanumeric. CHOICE is a pointer to the kind of data that is
being stored. The actual data parameters are ALPHA (alphanumeric), and XNUMl and
XNUM2 (floating point). These parameters must agree with the parameters set up in the
RUNCLIPS file. Based on the CHOICE parameter the ALPHA, XNUM1, and XNUM2
parameters are stored in variables in the common blocks SHARE and MULTIL for later
usage.

11

4. FUNCTIONS OF DeMAID

DeMAID performs several useful functions to aid the user in attaining a desirable structure.
These functions are (1) planning, (2) scheduling, (3) displaying the modules and their
couplings in an NxN matrix format, (4) displaying the subsystems in a multilevel format,
examining parallelism, and (6) displaying the dependency matrix. Each of these functions is
contained in a subroutine of the main program (figure 1). The planning function is always
done first followed by the scheduling function. Calling the other functions depends upon the
needs of the user.

After each function is completed a file is written containing the current list of modules. This
allows the user to restart the process without having to go back to the start each time. The
files are assigned by executing the DESIGN.COM file before executing the program. The
DESIGN.COM file assigns the folowing files to their respective units:

input file - unit 7 (input to the planning stage, user defines the name)
PLAN.OUT
SCHEDULE.OUT - unit 9 (a log file for the changes made by the scheduler)
LOGFILE.OUT - unit 10 (output from the scheduling stage)
DISPLAY.OUT - unit 11 (output from the display stage)

- unit 8 (output from the planning stage)

The various rule files are loaded into the program on an as needed basis. They need not be
assigned by the user before executing the program.

The functions of DeMAID are discussed in the remainder of this section using a generic
design problem as a sample problem. The input to this problem is shown in Table 1. The
problem has 46 modules. These modules perform one of the following tasks: (1) set the value
of one or more design variables, (2) evaluate one or more constraints functions, (3) calculate
intermediate results and behavior variables, and (4) evaluate the objective function. The
problem is defined in terms of relationships among these four design tasks. The dependency
of the objective and constraint functions on the design and behavior variables can be defined
explicitly by mathematical equations. The same is true for defining the dependency of the
behavior variables on the design variables. However, the question of whether new values of
the design variables can be set without knowing the outcome of the function evaluations
depends on the design manager’s view of the problem, therefore engineering judgement is
required when determining these dependencies. The main requirement is that a design
variable can only depend on a function evaluation if that function is dependent on the design
variable.

12

4.1 Planning

The term planning within the context of DeMAID means determining which modules
contribute to the solution of the problem. The user begins with a list of modules as the input
data. This list should contain all modules that might possibly be used in the problem. The
main program calls subroutine PLANIT. The rule file PLAN.CLP is loaded into the
knowledge base. The input data is read from unit 7 and asserted as facts into the knowledge
base. The inference engine is executed.

The first step in the planner is to determine whether or not a module contributes to the
problem by checking the output of each module against the input requirements of the other
modules. If the output of the module is contained in the input list of at least one other module
then that module contributes to the solution of the problem. If a module is found not to be a
contributor then it is removed from the list of modules, but saved for possible use later. A
message is printed to inform the user. If two modules have the same output name, then the
user is asked to either remove one of the modules or to change the name of the output on one
of the modules. Messages are printed to inform the user of actions that have been taken.

In the second step, the planner examines the input lists of all the modules to determine if all
input requirements are satisfied by the output of other modules. Some modules have no input
requirements. These modules are used for initialization purposes and represent external
inputs. If an input requirement to a module is not satisfied, then the user must interactively
add a new module to the list or remove the input requirement. To add a new module the user
must respond to a series of queries about the name, weight, time and output associated with
that module. The user must then type the module input beginning with the word "input" and a
number supplied by the program. (For example: input 29 GO23 G034) The word input
designates the list as input for the inference engine. If there are no input requirements the user
types input no-input".

If a new module is added, its input requirements are also checked. If one or more of its input
requirements are not met, then the modules removed from the list earlier are checked first to
determine if they satisfy the requirement, if not, then another module must be added. The
program checks the modules that have been removed during the first step to see if they satisfy
the requirements. If so, they are restored to the list and a message is printed for the user. This
step continues until all input requirements are satisfied. At the conclusion of this stage, a file,
PLAN.OUT, is written to unit 8 for input to the scheduling stage. Table 3 is a list of the
modules from table 2 after the planning function.

13

45
module
*module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
moduie
'module

LVO .
25
4j
35
33
34
17
6
37
21
38
36
32
31
30
29
28
27
24
23
20
19
15
14
13
10
9
8
7
5
4
2
26
16
12
1
11
3
22
18
39
40
31
42
43
44

Name
TAS KDO5
TAS KD04
TXSKD03
TASKDO6
TASKD 19
TASKB04
TASKD 15
TASKD 12
TASKCO1
T A S K 1 2
TASKDO9
TXSKD16
TXSKCl1
TASKC09
TASKD 10
TASKBO2
TASKC08
TASXD13
TASKC16
TASKDO2
TASKD 11
TASKC03
TASKC06
TASKCl7
TAS KCl5
TASRC07
TASKC14
TASK503
TMKD20
TASKD23
TMKDOI
TASKD14
T A S K 1 3
TASKC04
TASKC10
TASRD2 1
TASKD17
TASKCO5
TXSKBOZ
TASKD22
TASK018
TASKDO1
TASKDO8
TASICFol
TASKC02

wr.
3
3
3
3
3
2
3
3
1
1
3
3
1
1
3
2
1
3
1
3
3
1
1
1
1
1
1

3
3
3
3
1
1
1
3
3
1
2
3
3
3
3
4
1

7 -

Tm.
55
w
16
68
74
70
23
25
35
19
57
67
14

42
17
53
15
55
12
22
24
23
35
62
18
18
53
17
81
12
74
17
15
27
12
12
12
62
57
84
40
93
44
40

98

Ow. Status
DV05 ok
DV04 ok
DV03 ok
DV06 ok
DV19 ok
BV04 ok
DV15 ok
DV12 ok
GOOl ok
GO12 ok
DV09 ok
DV16 ok
GO11 ok
GOO9 ok
DVlO ok
BVO2 ok
GOO8 ok
DV13 ok
GO16 ok
DV02 ok
D V l l ok
GOO3 ok
G006 ok
GO17 ok
GO15 ok
GOO7 ok
GO14 ok
BV03 ok
DV20 ok
DV23 ok
DV07 ok
DV14 ok
GO13 ok
GOO4 ok
GO10 ok
DV21 ok
DV17 ok
GOO5 ok
BVOl ok
DV22 ok
DV18 ok
DVOl ok
DV08 ok
OB01 ok
GOO2 ok
,

~

Inpw
GOO3
GO03
GO1 I GO12 GO13
GO14 GO15
GOO9 GO10
DV09 DVIO DV11
GO16 GO17
GO16 GO17
DV16 DV27 BV02
DV23 BV03
GOO4 GOO5
GOO6 GOO7 GOO8
DVOl DV02 DV03
DV14 DV19 DV2O
G004 GOO5
DV21 DV22
DVl2 DV13 DV16 DV17 DVlS
GO16 GO17
DV23 BVOl
GO1 1 GO12 GO13 -
GOO4 GO05
DVOl DV02 DV03 DVO4 DV05
DVl2 DV13 DV16 DV17 DV18
DV23 BVOl
DV06 DV07 DV08 DV23
DV12 DV13 DV16 DV17 DV18
DV06 DV07 DV08 DV23
DVOl DV02 DV03
GOO9 GO10
OB01
GO14 GO15
GO16 GO17
DV23 BV03
DV06 DVlO DV11 BV04
DV15 DV19 DV20
GOOl GOO2
GOO6 GOO7 GOO8
DV07 DV08 DVlO DV11 BV04
DV12 DV13 DVl4DVl5
GOO1 GOO2
G006 GO07 GOO8
GO11 GO12 GO13
GO14 GO15
D V23
DV18 BV02

Table 3 - Modules after planning. (* indicates modules added during planning hcuon and
the italicized labels arc not part of the file)

14

4.2 Scheduling

The scheduling function is the heart of DeMAID. Within this context, scheduling means the
ordering of the modules into a meaningful solution sequence while limiting the number of
feedback links among the modules. The main program calls subroutine SKEDIT. The user
then has a choice of scheduling by VO requirements or by parallel requirements. Depending
on the choice, the rule file SKED.CLP or PARA.CLP is loaded into the knowledge base. The
data file PLAN.OUT which was output from the planning stage is read from unit 8 and
asserted as facts into the knowledge base. The inference engine is executed.

If the user has selected the option to schedule based on I/O requirements, then the scheduling
function reorders the modules based on their couplings. If the modules and their couplings
are placed into the matrix without any regard to their ordering, then very little information
regarding the desirable structure of the system is available to the design manager because the
modules are probably very disorganized and contain a substantial number of feedback links.
Limiting the feedback links among the modules is done by examining the couplings and
grouping the modules into circuits. DeMAID also orders the modules within the circuits and
orders the circuits within the design process. While Steward (ref. 2) implements the grouping
into circuits with matrix manipulations, DeMAID follows the same steps but replaces the
matrix manipulations for grouping by applying rules contained in a knowledge base. Because
this stage requires several minutes to complete, a message is periodically issued to the user to
indicate that the program is still executing.

One of the advantages of using a knowledge-based tool over matrix manipulations is the ease
with which new rules can be added. This gives the knowledge-based tool more flexibility.
Additional rules that were not in Steward’s (ref. 2) procedure were developed to control the
ordering of the niodules within circuits and the ordering of circuits within the design process.
The ordering is done based on the weight assigned to the modules. This step reorders the
modules within a circuit by moving the modules with the highest weight to the beginning of
the circuit. The modules with ever decreasing weights are moved to be below but near the top
priority modules to which they are coupled. Using this method, tasks can begin as soon as
possible but the modules with the highest weights are given priority.

Since limiting feedbacks is not the only means for improving the design process, the user may
also wish to examine the trade-offs between limiting the feedback links and the potential gains
from parallel processing. To do this the user selects the option to schedule based on parallel
requirements. Even though the natural order of processing for some tasks may be sequential,
these tasks can be ordered for parallel processing by artificially introducing feedbacks links
and therefore iterations. This is done by assuming that certain pieces of information are
available when, in reality, they have not yet been computed.

15

When scheduling by parallel requirements, the user must input the number of processors that
are available. In this type of scheduling the processors replace the circuits found in
scheduling by I/O requirements. The program computes the amount of time that would be
required to execute all modules in sequence and divides that time by the number of processors
available. This yields an average time per processor. In the ideal situation, all processors
would complete processing at the same time which is why this average is computed as a
starting point. The program begins filling the processors with the modules beginning with the
modules requiring the most time. This time is then subtracted from the time available in the
processor. The remaining time slots by finding the module with the maximum time that is
less than the time remaining available in a processor. This process continues until all modules
have been placed or there is no time slot available in any of the processors. If any module has
not been place in a processor, then its time is divided by the number of processors available
and added to the average time of the processors and the placement process is repeated. If all
modules have been placed, then the scheduling function based on parallel requirements is
complete. The program lists the number of iterations using parallel processing that can be
completed before the time is equal to the sequential time. This information can be used in
examining the trade-offs between sequential and parallel processing.

At the conclusion of this stage, a file, SCHEDULE.OUT, is written to unit 9. This module
data in this file has two new items not found in the original data or the PLAN.OUT file. It has
two sets of numbers. One is the original number of the module found in the original data,
while the second is the current module number found by reordering the modules in the
scheduling function. The other item is a number indicating which circuit the module is in.
This circuit number is the number of the first module in that circuit. During this function a
log is written to file LOGFILE.OUT on unit 10. This log keeps track of all the steps taken to
find the circuits.

16

4.3 The NxN Matrix Display

Once the scheduling function is completed, the user can display the NxN.matrix (figure 2).
The display of the modules and their couplings in DeMAID is slightly different from that of
Steward (ref. 2). The modules of the problem are placed on the diagonal of the matrix. The
couplings are lines connected horizontally to a box to indicate an output from that module and
vertically to indicate an input. A circle a the juncture of the horizontal and vertical lines
indicates a coupling between two modules. A circle below the diagonal indicates a feedback
link.

The main program calls subroutine DISPLY. The rule file DISP.CLP is loaded into the
knowledge base. The data file SCJ3EDULE.OUT which was created by the scheduling
function is read from unit 9 and asserted as facts into the knowledge base. The inference
engine is executed.

The following menu appears:

1 - new top
2 - links
3 - circuits
4 - links and circuits
5 - module data
6 - interface data
7 - list modules
8 - move a module
9 - main menu

Choose one
Follow choice with
1 - 25 modules
2 - 50 modules

where:

17

new top - moves a new module to the top left hand corner of the matrix. Since only a finite
number of modules (25 or 50) can be displayed at a time, the user has the option of moving up
or down the diagonal to display a different group of modules. When this option is chosen, the
user will be asked for a number. The number that is input will be the number of the module
the user wants to appear in the top left hand corner of the matrix.

links - displays the links between the modules.

circuits - displays the circuits found by the scheduler.

finks and circuits - displays both links and circuits.

module data - displays all the important data about a particular module. When this option is
chosen, the user is asked for the number of the desired module. The data includes the number,
name, weight, output, inputs, the modules which use the output, and the modules which
supply the input.

interface data - displays data about the interface between two modules. When this option is
chosen, the user is asked to place the crosshairs on the circle indicating an interface between
two modules. The data displayed indicates the name of the interface data and the names and
numbers of the two modules.

list modules - displays a list of all the modules with their current numbers, their original
numbers, their names, and their weights.

move a module - allows the user to move a module to a new location in the matrix. When this
option is selected, the user is asked whether or not the links and circuits should be redrawn.
This helps to determine where a module can be moved, since no module should be moved
outside of its circuit. The user is then asked the number of the module to be moved and the
module number after which it is to be moved. The circuits and links are redrawn after the
module is moved.

main menu - returns to the main menu. In addition, a data file DISPLAY.OUT is written to
unit 11 in the same format as SCHEDULE.OUT. If changes have been made to the matrix
since the scheduling function completed, then the user should replace the SCHEDULE.OUT
file with the DISPLAY.OUT file before making another display.

25 or 50 modules - allows the user to display 25 (1) or 50 (2) modules at a time. The selection
is appended on to one of the above selections. For example, the choice 42 implies that the
user wishes to display the links and circuits of 50 modules.

18

Figure 2 - NxN display of modules, circuits, and links after scheduling.

19

t

4.4 Multilevel Decomposition

The circuits and their couplings can also be displayed in an NxN matrix format (figure 3). By
examining the circuits, it is apparent that there are no feedback links among the circuits,
therefore there is no iteration among the circuits. The only iterations are contained within the
circuits. Thus, once the circuits have been found during the scheduling function, it is simple
to achieve a multilevel organization of the problem.

The main program calls subroutine MLTLVL. The rule file MLVL.CLP is loaded into the
knowledge base. The data file DISPLAY.OUT created by the display function is read from
unit 11 and asserted as facts into the knowledge base. The inference engine is executed to
determine the multilevel hierarchy. As circuits with satisfied input requirements are found,
they are placed on a level. A circuit is placed on the level below the lowest level containing a
circuit which generates input for the circuit being placed The multilevel display of the circuits
is shown in figure 4.

The following menu appears:

1 - NxN matrix display of circuits
2 - Hierarchical display of levels
3 - Main menu

where:

NxN display - displays the circuits only and their links.

Hierarchical display - displays the circuits in a multilevel format.

Main menu - returns to main menu

The time required for completing a circuit is computed by adding the times of the individual
modules in that circuit. The time for each circuit is listed. The time to complete each level is
computed by taking the maximum time to complete execution of any one circuit on that level.
These times are also listed. The total time to sequentially execute each module once is
computed by adding the times of all the modules. The approximate time savings by executing
the levels in parallel can then be computed to determine the amount of savings of parallel
execution over sequential execution. The number of processors required is determined by the
maximum number of circuits on any level. For the sample problem, this information is listed
in table 4.

20

,.

I ' 1

Figure 3 - NxN display of circuits and links.

i I ,
7

8

9
i

Level 1

Level 2

Level 3

rl Level 4

Figure 4 - Multilevel display of circuits.

21

4.5 Examine Parallelism

This function determines the savings that can be obtained from executing the modules within
a circuit in parallel. This implies that scheduling was done based on the VO requirements.
The main program calls subroutine PARALL. The rule file TPAR.CLP is loaded into the
knowledge base. The data file DISPLAY.OUT created by the display function is read from
unit 11 and asserted as facts into the knowledge base. The inference engine is executed.

The modules within the circuits are examined to determine how they might be executed in
parallel. Modules can begin execution if modules that satisfy their input requirements have
completed execution. A list of all modules executing in parallel is kept along with their time
requirements. The maximum number of modules executing at any one time indicates the
number of processors that will be required. The amount of time that can be saved by
executing certain modules in parallel and the number of processors that will be needed is
listed.

Since executing the system in parallel would probably require more iterations that a sequential
execution, the user needs some information on the anticipated trade-off. This function
determines the amount of time it would take to complete one iteration if each module was
given its own processor. This is determined by examining the time requirements of each
processor and retaining the maximum time. This number is then used to determine the
number of iterations that would be required before the parallel time would equal the sequential
time.

Circuit
1
2
3
4
5
6
7
8
9

Level
1
2
3
2

Time
125*
20 1
121
253
218
289*
257*
161*
216

Table 4 - Circuit and level times for parallel execution.
The * indicates the maximum time for each level.

22

4.6 The Dependency Matrix

Another function of DeMAID is to build the dependency mamx of the problem. It is an
ordered table that identifies the functional dependence between constraints and independent
design variables. The main program calls subroutine DEPMAT. The rule file DMAT.CLP is
loaded into the knowledge base. The data file DISPLAY.OUT which was created by the
display function is read from unit 11 and asserted as facts into the knowledge base. The
inference engine is executed.

Behavior variables can be evaluated using design variables, therefore each behavior variable
can be replaced by a list of independent design variables. Each constraint is examined to
determine its dependency on design and behavior variables. Whenever a constraint depends
on a behavior variable, the dependency of that behavior variable on the independent design
variables is substituted. This produces a rectangular matrix with Constraint functions listed
along the rows and the independent design variables along the columns (figure 5). An X
marks the dependency. The numbers along the rows and columns are the numbers after the
reordering of the modules. Building the dependency matrix after the planning and scheduling
functions reveals dependency patterns that may prove advantageous when developing
multilevel optimization algorithms.

.

23

MOD I 2 3 4 5 10111314151819~0~425~6273132333738;F3_33

7 I x x x x
8 I x x x x
9 I x x x
12 I x x x x x

16 I X
17 I X

x x x
x x x

22 I
23 I

x x x x x
X x x x

I X x x x x
30 I X x x x x

34 I X x x x x
35 I X x x x x
36 I X x x x x

29

40 I
41 I

X x x
x x x x

44 I
45 I

X
X

x x
x x

.

Figure 5 - Display of dependency mamx.

24

5. REFERENCES

1. Sobieszczanski-Sobieski, J.: "A Linear Decomposition Method for Large Optimization
Problems - Blueprint for Development. "NASA TM 83248, February 1982.

2. Steward, D. V.: Systems Analysis and Management. Petrocelli Books, Inc., New York, NY,
1981.

3. Rogers, J. L.: "A Knowledge-based Tool for Multilevel Decomposition of a Complex
Design Problem." NASA TP 2903, January 1989.

4. DI-3000 User's Guide, Precision Visuals Inc. Document Number D138 17, Release Number
4, March 1984.

5. Riley, G.; Culbert, C.; and Savely, R. T.: "CLIPS : An Expert System Tool for Delivery and
Training." Proceeding of the Third Conference on AI for Space Auplications, November
1987.

25

Report Documentation Page

among design teams. T h i s r e p o r t serves

Knowledge-based system
Des i gn
M u l t i l e v e l decomposi t ion
7 t i a l v s - r a l l e l p r n r p z z i n o

1. Report No. 1 2. Government Accession No.
NASA TM- 101575 i

as a User 's Guide f o r t h e program.

U n c l a s s i f i e d - U n l i m i t e d
Sub jec t Category 61

--

- ___ - -____ I-_
4 Title and Subtitle

DeMAID - A Design Manager's A ide f o r I n t e l l i g e n t
Decomposit ion User 's Guide

7 Authods)

James L. Rogers

9 Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

N a t i o n a l Aeronaut ics and Space A d m i n i s t r a t i o n
Washington, DC 20546-0001

_ _ _ _ 15 Supplementary Notes

3. Recipient's Catalog No.

_ _ ~ -
5 . Report Date

~- -__-
March 1989

-
6. Performing Organizat'on Code

8. Performing Organization Report No.

10. Work Unit No.

505-6 3- 11-01

11. Contract or Grant No.

13. Type of Report and Period Covered

Technica l Memorandum
14. Sponsoring Agency Code

Uncl a s s i f e d Uncl ass i f e d I 26
1 A03

NASA FORM 1626 OCT 86

